홈 > 테크포럼몰
 

행사 자료집 (49)   기술/산업 (692)   기업/경영 (3)  
 
         
인공지능과 창작, 딥러닝 GAN과 강화학습 기술동향
시중가격
판매가격
고객선호도
제조사 하연
상품코드 1510124734
발간일2017-11-06
규격256쪽 (A4)
ISBN979-11-85497-11-2 (93560)
수량선택

 
 
제1장 인공지능 기술 개요
   1. 인공지능 제반 기술 개요 및 주요 특징
      1-1. 인공지능(Artificial Intelligence, AI)의 개요 및 역사
             1-1-1. 인공지능의 개념과 정의
             1-1-2. 인공지능 역사
             1-1-3. 범용인공지능(AGI, Artificial General Intelligence)
      1-2. 인공지능의 주요 특징
             1-2-1. 추론과 문제해결
                   가. 탐색
                        가-1 맹목적 탐색(blind search) 방법
                        가-2. 휴리스틱 탐색(heuristic search)
                        가-3. 게임트리 탐색
                                ① Minimax Search
                                ② 알파베타 가지치기(Alpha-Beta Pruning) 기법
                                ③ AlphaGo의 게임 탐색 알고리즘­몬테카를로 트리 탐색(Monte Carlo Tree Search, MCTS)
                   나. 추론
             1-2-2. 지식표현과 문제 해결
                   가. 규칙처리 방식
                   나. 논리적 표현방식
                   다. 의미망(Semantic Network)
                   라. 틀 표현방식(Frame Representation)
             1-2-3. 기계학습(machine learning)
      1-3. 인공지능과 자율성
             1-3-1. 개요
             1-3-2. 인공지능과 창작
             1-3-3. 인공지능의 추론 학습 능력, 관계형 네트워크(Relation Networks, RNs)
   2. 딥러닝
      2-1. 개요 및 신경망 구조
             2-1-1. 딥러닝과 2세대 알파고
                   가. 딥러닝 개요
                   나. 딥러닝 특징
                   다. 2세대 알파고, 알파고 마스터
                   라. 알파고의 계산 능력
                   마. 알파고 제로
             2-1-2. 신경망의 구조
                   가. 인공신경망(artificial neural networks)의 개요
                   나. 인경신경망의 구조
             2-1-3. 다층신경망
             2-1-4. 딥러닝 방식
                   가. 강화학습(Reinforcement Learning)
                        가-1. 강화학습의 개요
                        가-2. MDP(Markov Decision Process) 방식
                        가-3. DQN(Deep Q-Network)
                        가-4. 강화학습의 특징
                   나. GPU 방식 병렬컴퓨팅
                        나-1. GPU(Graphics Processing Unit, 그래픽 처리 장치)
                        나-2. GPGPU(General Purpose Graphics Processing Units)
                                ① MPI(Message Passing Interface, 메시지 전달 인터페이스)
                                ② CUDA(Compute Unified Device Architecture, 쿠다)
                                ③ OpenCL(Open Computing Language)
                                ④ TPU(Tensor Processing Unit, TPU)
             2-1-5. 딥러닝(Deep Learning)과 알파고 마스터
      2-2. 기계학습
             2-2-1. 클러스터링(Clustering)과 기계학습
             2-2-2. 기계번역
      2-3. 딥러닝 기술 동향
             2-3-1. 개요
             2-3-2. RNN과 LSTM
                   가. 순환신경망(Recurrent neural networks)
                   나. LSTM(Long-short term memory, 장단기 기억 구조)
             2-3-3. 컨볼루션 네트워크(CNN, convolutional neural networks, 합성곱신경망)
             2-3-4. GAN(Generative Adversarial Network. 생성 대립 신경망)
      2-4. 이미지인식 기술
      2-5. 자연어 처리(Natural Language Processing, NLP)
             2-5-1. 자연어 처리(NLP) 개요
                   가. Word2Vec
                   나. RNN과 자연어 처리
                   다. CNN과 자연어 처리
             2-5-2. 자연어 처리와 인공지능비서
                   가. 질의응답 시스템(question-answering system)
                   나. 대화시스템
 

제2장 인공지능 학습 GAN 기술동향
   1. GAN(Generative Adversarial Network) 개요 및 학습 방법
      1-1. GAN(Generative Adversarial Network, 적대적 생성 신경망) 개요 및 정의
             1-1-1. GAN 개요
             1-1-2. GAN 구조
                   가. 학습데이터
                   나. 생성자(generator) 네트워크
                   다. 판별자(discriminator) 네트워크
             1-2-3. 적대적 학습 방법
   2. GAN 기술동향
      2-1. GAN 기술동향 개요
      2-2. GAN 응용 모델과 적용 사례
             2-2-1. CGAN(Conditional GAN)
             2-2-2. InfoGAN
             2-2-3. Laplacian GAN
             2-2-4. DCGAN(Deep Convolutional Generative Adversarial Networks)
             2-2-5. DiscoGAN
   3. 알파고 제로와 인공지능의 향후 전망
      3-1. 인공지능 시장 전망
     

 

그림목차
 

[그림 1] 정보통신기술 계층과 디지털 커넥툼
[그림 2] 인공지능의 연구 흐름
[그림 3] 튜링테스트
[그림 4] 슈퍼비전팀의 연구 내용
[그림 5] 뉴런과 계층형 시간 메모리(HTM)가 모방한 인공신경망
[그림 6] 초인공지능
[그림 7] 인공지능에 의한 대재앙에 이르는 위험 모델
[그림 8] 너비우선탐색 알고리즘과 순서
[그림 9] 깊이우선 탐색(전위순회)의 과정
[그림 10] 휴리스틱 탐색의 한 예
[그림 11] tic-tac-toe 게임의 트리탐색 해결방법
[그림 12] Minimax
[그림 13] Alpha-Beta Pruning 알고리즘의 탐색 결과
[그림 14] 몬테카를로 트리탐색에서 단계별로 탐색을 확장하는 과정
[그림 15] 알파고의 컨볼루션 신경망 구조(정책, 가치 네트워크)
[그림 16] 지식표현
[그림 17] 의미망
[그림 18] 인간의 신경망을 모방한 인공지능 신경망
[그림 19] 전통적 프로그래밍(연역법)과 기계학습(귀납법) 패러다임 비교
[그림 20] 심층신경망을 활용한 조르주 쇠라 작 <그랑 자트 섬의 일요일>의 다양한 형태
[그림 21] 나선형 신경망(CNN)을 통한 스타일과 콘텐츠의 재구성 프로세스
[그림 22] LSTM 기반 음악 작곡(LSTM RNN Music Composition)
[그림 23] AI에 의한 자동 컬러링
[그림 24] 영화 her
[그림 25] 관계형 질문
[그림 26] 객체 유형(위)과 위치 지정 체계(좌우)
[그림 27] CNN을 이용한 관계 추론
[그림 28] 기계학습 절차
[그림 29] 딥러닝의 전체 흐름도
[그림 30] TensorFlow를 이용한 딥러닝
[그림 31] 기술 스택으로 본 딥러닝 프레임워크
[그림 32] 알파고의 Deep Neural Networks 학습 pipeline
[그림 33] 소비전력당 성능
[그림 34] 4차 산업혁명 작동원리
[그림 35] 인공신경망의 구조
[그림 36] 신경세포의 구성과 인공신경망
[그림 37] Training a student network using hints
[그림 38] 파라미터 공유 기법
[그림 39] 인공신경망 기본 형태
[그림 40] 다층신경망
[그림 41] 다층신경망 구조
[그림 42] 환경과 상호작용을 통한 강화학습 구조
[그림 43] 강화학습 프레임워크(Reinforcement Learning Framework)
[그림 44] 로봇에 적용된 DQN
[그림 45] q-learning
[그림 46] 마르코프 결정과정 문제(Markov Decision Process, MDP)
[그림 47] 딥마인드 DQN 구조
[그림 48] 미분 가능 신경컴퓨터의 아키텍처 구조
[그림 49] 강화와 처벌
[그림 50] 강화학습 시스템 구조
[그림 51] 그래픽 처리 장치
[그림 52] CUDA 지원 GPU의 아키텍처
[그림 53] GPU와 CPU의 소비 전력당 성능 비교
[그림 54] 데이터 병렬화
[그림 55] General MPI Program Structure
[그림 56] CUDA Application
[그림 57] CUDA 프로그램
[그림 58] OpenCL execution model
[그림 59] 구글 TPU의 구조
[그림 60] TPU의 매트릭스 승수 단위(MXU)
[그림 61] TensorFlow에서 TPU
[그림 62] 딥러닝
[그림 64] K-Means 알고리즘의 수행절차
[그림 65] 군집분석
[그림 66] 계층적 군집(Hierarchical Clutering)
[그림 67] 전통적 프로그래밍(연역법)과 기계학습(귀납법) 패러다임 비교
[그림 68] 인공신경망 기계번역
[그림 69] 구글의 신경망 기반 번역기 구조
[그림 70] Translation model
[그림 71] 인간과 교감하는 AI
[그림 72] Feedforward NN 대 RNN
[그림 73] Recurrent neural networks
[그림 74] Recurrent neural networks
[그림 75] Recurrent neural networks
[그림 76] RNN에서의 Vanishing Gradient Problem
[그림 77] LSTM의 개념
[그림 78] 순환신경망(좌)과 LSTM(우) 비교
[그림 79] Conv-LSTM Architecture
[그림 80] LSTM 유닛과 게이트의 작동 방식
[그림 81] Word Embedding Correlation model
[그림 82] GRU Gating
[그림 83] CNN을 이용한 객체 검출
[그림 84] CNN 활용 필기체 인식기술
[그림 85] 물체인식에 사용된 CNN
[그림 86] convolution 신경망
[그림 87] 전결합 레이어와 Convolution layer
[그림 88] CNN 훈련모델
[그림 89] Neural-image QA
[그림 90] generative model의 분류
[그림 91] Fake and real images
[그림 92] 뇌의 시각정보처리 과정과 딥러닝 이미지인식
[그림 93] 시각 정보를 프로세싱하는 과정의 예
[그림 94] 딥러닝 알고리즘을 활용한 얼굴인식 프로세스
[그림 95] 얼굴인식 과정 예시
[그림 96] 손글씨 이미지인식을 위한 인공신경망 개념도
[그림 97] 물체의 분류와 위치 식별 문제
[그림 98] 페이스북 딥페이스 동작 원리 모습
[그림 99] Camelyon16대회에서 선보인 앤드류 백(Andrew Beck)교수팀의 유방암 병리 슬라이드 판독
[그림 100] NLP 단계
[그림 101] 자연어 처리 기술
[그림 102] 형태소 분석
[그림 103] 문장 해석
[그림 104] Syntaxnet Architecture
[그림 105]DD차원 벡터로 표현된 단어 벡터
[그림 106] Training Data
[그림 107] CBOW Architecture
[그림 108] Skip-Gram 신경망 구조
[그림 109] CBOW와 Skip-gram의 차이
[그림 110] Encoder-Decoder 번역 모델
[그림 111] 문서 분류를 위한 계층적 Attention network
[그림 112] 순차적인 RNN 처리
[그림 113] CNN을 활용한 문장 분류 아키텍처
[그림 114] 질의응답 시스템
[그림 115] 인관관계 질의응답 시스템
[그림 116] 자연어시스템의 구성
[그림 117] 자연어 생성(Natural Language Generation)
[그림 118] 대화시스템 모델
[그림 119] 인지시스템의 요소
[그림 120] GAN의 개념도
[그림 121] GAN의 학습 방법
[그림 122] Generative Adversarial Network
[그림 123] Generative model
[그림 124] Adversarial Nets Framework
[그림 125] Generative Network
[그림 126] Discriminator Network
[그림 127] 머신러닝과 이미지 생성의 결합
[그림 128] CGAN의 얼굴인식 과정
[그림 129] CGAN(Conditional GAN)
[그림 130] InfoGAN Implementation
[그림 131] DCGAN Architecture
[그림 132] 기존 GAN Architecture
[그림 133] DCGAN
[그림 134] 선택기 신경망과 생성기 신경망
[그림 135] DiscoGAN 사용 예시
[그림 136] Artificail Intelligence Revenue, World Markets(2016~2025, $ Millions)
[그림 137] Top Region Based on 5Year CAGR(2015~2020)
[그림 138] 2016년도 ICT 기술수준조사 보고서
[그림 139] Automotive Artificial Intelligence Total Revenue by Segment, World Markets(2016~2025,
[그림 140] 인공지능 분야별 중국의 특허신청 비중
[그림 141] 인공지능 국내 시장 규모
 

     

표목차
 

[표 1] 인공지능의 지능수준에 따른 분류
[표 2] 인공지능과 딥러닝 역사
[표 3] 인공지능 분류
[표 4] AI관련 기술분야
[표 5] MCTS의 단계
[표 6] 지식의 분류
[표 7] 기계학습의 응용 분야
[표 8] 딥러닝 주요 알고리즘
[표 9] 글로벌 기업 딥러닝 기술 경쟁
[표 10] 주요 IT업체 인공지능 현황
[표 11] 알파고의 두 가지 전략
[표 12] 알파고의 진화
[표 13] 알파고의 구조와 성능
[표 14] 알파고 제로 성능 및 지식습득 모식도
[표 15] CPU와 GPU의 비교
[표 16] CUDA 처리 흐름 및 장단점
[표 17] 텐서 프로세싱 유닛의 데이터센터 성능 분석
[표 18] 몬테카를로 트리 서치에 따른 알파고의 바둑 진행 예측
[표 19] 알파고의 구조와 성능
[표 20] 글로벌 기업 딥러닝 기술 경쟁
[표 21] 딥러닝 적용 방식별 응용 사례
[표 22] 자연어 처리 시스템
[표 23] RNN의 기술요소
[표 24] CNN의 기술 요소
[표25]대화형AI시스템의 분류
[표 26] 국내외 주요 AI개인비서 서비스 현황
 
번호 제목 작성자 작성일 답변
이 상품에 대한 질문이 아직 없습니다.
 
이 상품과 관련된 상품이 없습니다.
 
※ 도서상품(보고서 및 세미나북)은 비과세상품(면세대상)으로 공급가액만 결제됩니다.
※ 현금 결제시 세금계산서가 아닌 계산서가 발행됩니다.
 
배송정보
- 배송지역: 전국
- 배송비: 무료입니다.(도서,산간,오지 일부지역 등은 배송비가 추가될 수있습니다.)
- 본 상품의 평균 배송일은 2일입니다.(입금 확인 후)
  (평균배송일이란? 동일 상품을 주문한 고객이 실제 인수한 배송일의 평균을 말합니다.)
 
 
카드결제 오류 해결방법 
대부분 카드결제 오류 발생시 KCP기술지원팀(1544-8661)으로 연락 주시면 '결제오류'에 대한 보다 신속하고 상세한 안내(원격지원)를 받으실 수있습니다.
 
 
ARS 결제 서비스
온라인 카드 결제 시 잘 안 되실 경우 테크포럼 고객센터(070-7169-5396)로 전화 주시면 'ARS 결제 서비스'를 안내 해드립니다.
ARS 결제 서비스 절차는 아래와 같습니다.
① 'ARS 결제 서비스' 요청

② 고객님 휴대폰으로 'ARS 결제' 문자 발송

③ ARS 전화 연결

④ 카드번호,  카드유효기간(MM/YY),  사업자번호(앞자리),  비밀번호(앞두자리) 입력

⑤ 결제완료
 
 
계산서
- 현금결제(계좌이체, 무통장입금)건에 한해서 발행됩니다.
- 계산서가 필요하신 분은 주문시 '전하실 말씀'란에 메모를 남겨주세요.
- 사업자등록증 사본을 이메일(contact@techforum.co.kr) 또는 팩스(070-7159-1608)로 보내주시기 바랍니다.
- 요청하신 계산서는 등록하신 메일로 발송됩니다.
 
 
거래명세서
- 거래명세서가 필요하신 분은 주문시 '전하실 말씀'란에 메모를 남겨주세요.
- 사업자등록증 사본을 이메일(contact@techforum.co.kr) 또는 팩스(070-7159-1608)로 보내주시기 바랍니다.
- 요청하신 거래명세서는 등록하신 메일로 발송됩니다.
 
 
견적서
- 견적서가 필요하신 분은 도서 목록을 이메일(contact@techforum.co.kr) 로 보내주시기 바랍니다.
- 요청하신 견적서는 등록하신 메일로 발송됩니다.
 
교환/반품
- 주문하신 도서가 품절 및 절판등의 사유로 발송할 수 없을시 에는 대금을 환불해 드립니다.
- 도서의 파손이나 불량으로 인한 교환을 요청하실 경우에는 재발송하여 드립니다. (택배비 무료)
- 고객의 부주의로 인한 도서의 파손은 환불처리가 불가하오니 양해바랍니다.
 






가입사실확인